3.1842 \(\int \frac {1}{(a+b x)^{7/6} (c+d x)^{13/6}} \, dx\)

Optimal. Leaf size=80 \[ -\frac {6 b \sqrt [6]{\frac {b (c+d x)}{b c-a d}} \, _2F_1\left (-\frac {1}{6},\frac {13}{6};\frac {5}{6};-\frac {d (a+b x)}{b c-a d}\right )}{\sqrt [6]{a+b x} \sqrt [6]{c+d x} (b c-a d)^2} \]

[Out]

-6*b*(b*(d*x+c)/(-a*d+b*c))^(1/6)*hypergeom([-1/6, 13/6],[5/6],-d*(b*x+a)/(-a*d+b*c))/(-a*d+b*c)^2/(b*x+a)^(1/
6)/(d*x+c)^(1/6)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {70, 69} \[ -\frac {6 b \sqrt [6]{\frac {b (c+d x)}{b c-a d}} \, _2F_1\left (-\frac {1}{6},\frac {13}{6};\frac {5}{6};-\frac {d (a+b x)}{b c-a d}\right )}{\sqrt [6]{a+b x} \sqrt [6]{c+d x} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)^(7/6)*(c + d*x)^(13/6)),x]

[Out]

(-6*b*((b*(c + d*x))/(b*c - a*d))^(1/6)*Hypergeometric2F1[-1/6, 13/6, 5/6, -((d*(a + b*x))/(b*c - a*d))])/((b*
c - a*d)^2*(a + b*x)^(1/6)*(c + d*x)^(1/6))

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rubi steps

\begin {align*} \int \frac {1}{(a+b x)^{7/6} (c+d x)^{13/6}} \, dx &=\frac {\left (b^2 \sqrt [6]{\frac {b (c+d x)}{b c-a d}}\right ) \int \frac {1}{(a+b x)^{7/6} \left (\frac {b c}{b c-a d}+\frac {b d x}{b c-a d}\right )^{13/6}} \, dx}{(b c-a d)^2 \sqrt [6]{c+d x}}\\ &=-\frac {6 b \sqrt [6]{\frac {b (c+d x)}{b c-a d}} \, _2F_1\left (-\frac {1}{6},\frac {13}{6};\frac {5}{6};-\frac {d (a+b x)}{b c-a d}\right )}{(b c-a d)^2 \sqrt [6]{a+b x} \sqrt [6]{c+d x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 71, normalized size = 0.89 \[ -\frac {6 \left (\frac {b (c+d x)}{b c-a d}\right )^{13/6} \, _2F_1\left (-\frac {1}{6},\frac {13}{6};\frac {5}{6};\frac {d (a+b x)}{a d-b c}\right )}{b \sqrt [6]{a+b x} (c+d x)^{13/6}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)^(7/6)*(c + d*x)^(13/6)),x]

[Out]

(-6*((b*(c + d*x))/(b*c - a*d))^(13/6)*Hypergeometric2F1[-1/6, 13/6, 5/6, (d*(a + b*x))/(-(b*c) + a*d)])/(b*(a
 + b*x)^(1/6)*(c + d*x)^(13/6))

________________________________________________________________________________________

fricas [F]  time = 1.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b x + a\right )}^{\frac {5}{6}} {\left (d x + c\right )}^{\frac {5}{6}}}{b^{2} d^{3} x^{5} + a^{2} c^{3} + {\left (3 \, b^{2} c d^{2} + 2 \, a b d^{3}\right )} x^{4} + {\left (3 \, b^{2} c^{2} d + 6 \, a b c d^{2} + a^{2} d^{3}\right )} x^{3} + {\left (b^{2} c^{3} + 6 \, a b c^{2} d + 3 \, a^{2} c d^{2}\right )} x^{2} + {\left (2 \, a b c^{3} + 3 \, a^{2} c^{2} d\right )} x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(7/6)/(d*x+c)^(13/6),x, algorithm="fricas")

[Out]

integral((b*x + a)^(5/6)*(d*x + c)^(5/6)/(b^2*d^3*x^5 + a^2*c^3 + (3*b^2*c*d^2 + 2*a*b*d^3)*x^4 + (3*b^2*c^2*d
 + 6*a*b*c*d^2 + a^2*d^3)*x^3 + (b^2*c^3 + 6*a*b*c^2*d + 3*a^2*c*d^2)*x^2 + (2*a*b*c^3 + 3*a^2*c^2*d)*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x + a\right )}^{\frac {7}{6}} {\left (d x + c\right )}^{\frac {13}{6}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(7/6)/(d*x+c)^(13/6),x, algorithm="giac")

[Out]

integrate(1/((b*x + a)^(7/6)*(d*x + c)^(13/6)), x)

________________________________________________________________________________________

maple [F]  time = 0.10, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (b x +a \right )^{\frac {7}{6}} \left (d x +c \right )^{\frac {13}{6}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^(7/6)/(d*x+c)^(13/6),x)

[Out]

int(1/(b*x+a)^(7/6)/(d*x+c)^(13/6),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x + a\right )}^{\frac {7}{6}} {\left (d x + c\right )}^{\frac {13}{6}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(7/6)/(d*x+c)^(13/6),x, algorithm="maxima")

[Out]

integrate(1/((b*x + a)^(7/6)*(d*x + c)^(13/6)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (a+b\,x\right )}^{7/6}\,{\left (c+d\,x\right )}^{13/6}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x)^(7/6)*(c + d*x)^(13/6)),x)

[Out]

int(1/((a + b*x)^(7/6)*(c + d*x)^(13/6)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**(7/6)/(d*x+c)**(13/6),x)

[Out]

Timed out

________________________________________________________________________________________